2 research outputs found

    Using machine learning techniques to evaluate multicore soft error reliability

    Get PDF
    Virtual platform frameworks have been extended to allow earlier soft error analysis of more realistic multicore systems (i.e., real software stacks, state-of-the-art ISAs). The high observability and simulation performance of underlying frameworks enable to generate and collect more error/failurerelated data, considering complex software stack configurations, in a reasonable time. When dealing with sizeable failure-related data sets obtained from multiple fault campaigns, it is essential to filter out parameters (i.e., features) without a direct relationship with the system soft error analysis. In this regard, this paper proposes the use of supervised and unsupervised machine learning techniques, aiming to eliminate non-relevant information as well as identify the correlation between fault injection results and application and platform characteristics. This novel approach provides engineers with appropriate means that able are able to investigate new and more efficient fault mitigation techniques. The underlying approach is validated with an extensive data set gathered from more than 1.2 million fault injections, comprising several benchmarks, a Linux OS and parallelization libraries (e.g., MPI, OpenMP), as well as through a realistic automotive case study

    Exploiting memory allocations in clusterized many-core architectures

    Get PDF
    Power-efficient architectures have become the most important feature required for future embedded systems. Modern designs, like those released on mobile devices, reveal that clusterization is the way to improve energy efficiency. However, such architectures are still limited by the memory subsystem (i.e., memory latency problems). This work investigates an alternative approach that exploits on-chip data locality to a large extent, through distributed shared memory systems that permit efficient reuse of on-chip mapped data in clusterized many-core architectures. First, this work reviews the current literature on memory allocations and explore the limitations of cluster-based many-core architectures. Then, several memory allocations are introduced and benchmarked scalability, performance and energy-wise, compared to the conventional centralized shared memory solution to reveal which memory allocation is the most appropriate for future mobile architectures. Our results show that distributed shared memory allocations bring performance gains and opportunities to reduce energy consumption
    corecore